Training Transformers

Wamiq Reyaz KAUST 16-Sep-2021

• Generative models for structured sequence generation.

- Training loss is Cross-Entropy.
- Generation is autoregressive.
- Both Decoder and Encoder-Decoder style architectures.
- GPT-2 style attention layers.
- 16-22 layers.
- Adam/AdamW optimizer
- Ir=10e-4 seems to work well for me.


```
config = GPT2Config(
    vocab_size=args.vocab,
    n_positions=args.enc_n,
    n_ctx=args.enc_n,
    n_embd=args.dim,
    n_layer=args.enc_layer,
    n_head=args.n_heads,
    is_causal=True,
    is_encoder=False,
    n_types=args.n_types,
    n_stypes=args.n_stypes
)
```



```
config = GPT2Config(
    vocab_size=2**8,
    n_positions=200,
    n_ctx=200,
    n_embd=544,
    n_layer=22,
    n_head=12,
    is_causal=True,
    is_encoder=False,
    n_types=args.n_types,
    n_stypes=args.n_stypes
)
```


Where do I train it?

- 8x V100 or 8x A100 nodes.
- Train with Distributed Data Parallel.
- Train with Mixed Precision (AMP).

• Use larger models if your data is large.

Large in Layers

Large in Dimension

- Use larger models if your data is large.
- Use DDP (about 10-25% [1] faster).
- Use AMP (saves about 25% [1] memory).
- Use Gradient Clipping to counteract divergence.
- Learning rate did not make a lot of difference in my experience.

Lessons Learned (Common Problems)

- This might be specific to generative models.
- Use lower temperature for sampling. Higher temperatures lead to a lot of unparseable samples.
- If output samples do not make sense, make sure start tokens/conditional tokens are the same as during training. Can mess up very easily.
- Can perform masking of logits during sampling. Very timeconsuming to implement. But yields benefits.

Information Acquired

• Warmup improves performance somewhat.

Information Acquired

Batch size improves performance.

Final Takeaways

- Use larger models if your data is large.
- Use DDP (about 10-25% [1] faster).
- Use AMP (saves about 25% [1] memory).
- Use Gradient Clipping to counteract divergence.
- Use Warmup.
- Use max bs that fits on your GPUs.

References

• Training Tips for the Transformer Model, https://arxiv.org/abs/1804.00247

